

Temporal Variations in Stratospheric Chlorine Monoxide from the Aura Microwave Limb Sounder

L. Froidevaux ⁽¹⁾, D. Kinnison ⁽²⁾, M. L. Santee ⁽¹⁾,

N. J. Livesey (1), W. G. Read (1), and R. A. Fuller (1)

(1) Jet Propulsion Laboratory, Caltech, Pasadena, CA, USA (2) National Center for Atmospheric Research, Boulder, CO, USA

Credits: teams for WACCM4 model runs and GEOS-5 analyses

Aura Science Team Meeting, FMI, Helsinki, Finland, Sep. 13-15, 2011

Overview and Goals

- What are the long-term changes in upper stratospheric chlorine?
 - > HCl trend results from Aura MLS are less robust after band 13 hardware-related issue (→ sparse B13 data after 2006)
 - MLS band 14 gives continuous daily HCl, but unsuitable for small trend detection (upper strat).
- Here, we show preliminary results on the "long-term" (6-7 yrs only...) behavior of daytime CIO from Aura MLS in the mid- to upper stratosphere
 - and compare with SD-WACCM4/GEOS-5
- CIO characteristics (mid-to upper strat.):
 ~3500 strat. profiles daily (day and night)
 Vertical resolution ~ 3.5 km
 Precision (single profile) ~ 0.1 ppbv
 Accuracy (sys. uncert.) ~10-15% (~0.05 ppbv)
 - > see Santee et al. [2008] for v2.2 validation + v3.3 update in Livesey et al. [2011, MLS v3.3 Level 2 Data Quality and Description Document]

HCI trends (near 0.5 hPa)
various datasets & expectations (curves)
[updated from Froidevaux et al., 2006]

Solar Zenith Angle (SZA) variation in MLS coverage

SZA variation in MLS coverage over 12 months

- We have binned daytime CIO using SZA < 80°
 - also bin nighttime CIO datasets for SZA > 100° (+ 2 twilight cases)
- SZA coverage (x axis) for all months (y axis) in NH lats [see below]

Lucien Froidevaux et al., Temporal Variations in Stratospheric CIO, Aura STM, Sep. 13-15, 2011, FMI, Helsinki, Finland

Overview of daytime Aura MLS CIO: 32 to 1 hPa (Aug. 2004 – Aug. 2011)

Specified Dynamics (SD) WACCM4/GEOS-5 Model runs

- Chemistry (122 species; 380 chem. reactions; time step is 30 min.)
 - Represents chemical processes from troposphere through lower thermosphere (Ox, HOx, NOx, ClOx, and BrOx chemical families; CH₄, NMHC and oxidation products)
 - CFCs, HCFCs, and halons based on surface VMRs → changing CI

Dynamics / Transport:

- Meteorological fields are from the NASA GMAO [GEOS5].
 - 0.5°x 0.66°, 72 levels (up to 80 km)
 - → 1.9°x 2.5° [WACCM4 resolution]
- Vertical: 88 levels (up to 140 km)
- Cross over from SD to fully interactive dynamics above ~50km
- Nudge the model at every time step [→ "follows" GEOS-5]

Simulation period:

- Showing: 1 Jan 2005 through end of 2010
- Output consistent with Aura MLS profile locations & local times
- Daytime CIO used here: binned using SZA < 80°
 - as defined for zonal mean daytime Aura MLS CIO dataset [5°lat. bins]

Aura MLS and SD-WACCM4 daytime CIO time series (22 hPa to 7 hPa)

Excellent agreement, overall, in these time series

Aura MLS and SD-WACCM4 daytime CIO time series (4.6 to 1.5 hPa)

Excellent agreement, overall, in these time series

Daytime CIO: SD-WACCM4 versus Aura MLS (2005-2010)

- High degree of correlation especially for p ≤ 10 hPa
- Model values slightly lower than MLS (but within error bars)

Daytime CIO: SD-WACCM4 versus Aura MLS (2005-2010)

- High degree of correlation especially for p ≤ 10 hPa
- Model values slightly lower than MLS (but within error bars)

Rate of decrease for daytime CIO: SD-WACCM4 vs Aura MLS

- Preliminary results for <u>average</u> rate of change in global CIO show fairly good agreement (values and vertical distribution),
 model CIO appears to decrease slightly slower than implied by MLS
- However, these numbers are subject to revision in terms of residual linear rates of change, as seasonal and QBO variations need to be better accounted for
 - > additional analyses to follow, using Aug. 2004 to late 2011 model + data

Notes:

- CIO is a small fraction of Cly and a few pptv/yr for dClO/dt vs 15-25 pptv/yr for dCly/dt.
- CIO also affected by CH₄, H₂O,...

SD-WACCM4/GEOS-5 Model runs

Lucien Froidevaux et al., Temporal Variations in Stratospheric CIO, Aura STM, Sep. 13-15, 2011, FMI, Helsinki, Finland

Summary

- We have performed preliminary analyses of the average rate of change in global daytime mid-to upper stratospheric CIO from Aura MLS (2004-2011).
- The CIO changes (magnitude and vertical distribution) are in overall good agreement with global model results (SD-WACCM4/GEOS5 avg. time series, sampled similarly to the MLS observations).
 - > more detailed analyses are being pursued.
- The observed upper stratospheric CIO decreases
 do appear to stem from global surface CI decreases (and
 international restrictions on CI source gases).
- Changes in CIO are not as closely tied to total chlorine as upper stratospheric HCI (as CIO is also influenced by CH₄, H₂O, etc...).
- However, long-term changes in active chlorine reflect more directly (than HCI) on O₃ depletion and recovery.